THESISTEXT SIZE

Date of publication 2016.07.07

Effect of Oxygen on the Structural/Electrical Properties of NIZO Films on Transparent Flexible Substrates

Author
Byung-Wook Lim, Young-Jun Lee, Joo-Hyung Kim, Hyeon-Taek Jeong, Tae-Won Ha, Eun-Mi Kim, Gi-Seok Heo, Young-Baek Kim, Hyeon-Ju Kim, and Ho-Saeng Lee

Abstract

Thin film transparent oxide shave attracted considerable attention over the last few decades for transparent electronic applications, such as flat panel displays, solar cells, touch-pads, and mobile devices. Metallic doped InZnO (IZO) films have been suggested for the transparent layer exhibiting semiconducting or metallic properties because of its controllable mobility and excellent electrical properties, but they show a degradation of the electrical performance under bending conditions. This study assessed Ni doped IZO (NIZO) films as a flexible transparent electrode on different flexible transparent substrates for flexible electronic applications. Thin NIZO films were deposited on cellulose, PES and glass substrates using a sputtering system with a single NIZO target (In2O3 73.8/ZnO 15.7/NiO 10.5 mol.%) at room temperature. During deposition of the NIZO films, the total flow rate of the carrier gas was maintained using a regulating system. The effects of the oxygen content in the carrier gas on the structural, electrical and optical properties of the thin films deposited on flexible substrates was characterized. The results highlight the feasibility of the transparent NIZO oxide layer on flexible substrates as a flexible electrode with a relatively high sheet resistance, which is strongly related to the crystallographic structure and oxygen content during the film deposition process.s have been suggested for the transparent layer exhibiting semiconducting or metallic properties because of its controllable mobility and excellent electrical properties, but they show a degradation of the electrical performance under bending conditions. This study assessed Ni doped IZO (NIZO) films as a flexible transparent electrode on different flexible transparent substrates for flexible electronic applications. Thin NIZO films were deposited on cellulose, PES and glass substrates using a sputtering system with a single NIZO target (In2O3 73.8/ZnO 15.7/NiO 10.5 mol.%) at room temperature. During deposition of the NIZO films, the total flow rate of the carrier gas was maintained using a regulating system. The effects of the oxygen content in the carrier gas on the structural, electrical and optical properties of the thin films deposited on flexible substrates was characterized. The results highlight the feasibility of the transparent NIZO oxide layer on flexible substrates as a flexible electrode with a relatively high sheet resistance, which is strongly related to the crystallographic structure and oxygen content during the film deposition process.

Keyword

  • Journals people
    JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY
  • Publisher
    American
  • Articles Category
    SCI(E)