Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Prediction of Ship Resistance and Wave Profiles Using Machine Learning with Hull Sectional Geometry Data

Full metadata record
DC Field Value Language
dc.contributor.author변병진-
dc.contributor.author이승환-
dc.contributor.authorKim, Yoo Chul-
dc.contributor.author연성모-
dc.contributor.author김광수-
dc.contributor.author양경규-
dc.date.accessioned2026-01-12T00:31:06Z-
dc.date.available2026-01-12T00:31:06Z-
dc.date.issued2025-10-20-
dc.identifier.urihttps://www.kriso.re.kr/sciwatch/handle/2021.sw.kriso/11313-
dc.titlePrediction of Ship Resistance and Wave Profiles Using Machine Learning with Hull Sectional Geometry Data-
dc.typeConference-
dc.citation.conferenceName16th International Symposium on Practical Design of Ships and Other Floating Structures PRADS 2025-
dc.citation.conferencePlace미국-
Files in This Item
Appears in
Collections
ETC > 2. Conference Papers

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Kim, Kwang Soo photo

Kim, Kwang Soo
지능형선박연구본부
Read more

Altmetrics

Total Views & Downloads

BROWSE