Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

기계학습 모델을 활용한 선박 공칭반류장 예측

Full metadata record
DC Field Value Language
dc.contributor.author김유철-
dc.contributor.author김건도-
dc.contributor.author연성모-
dc.contributor.author황승현-
dc.contributor.author이영연-
dc.contributor.author김광수-
dc.date.accessioned2025-01-08T06:30:36Z-
dc.date.available2025-01-08T06:30:36Z-
dc.date.issued2024-10-
dc.identifier.issn1225-1143-
dc.identifier.issn2287-7355-
dc.identifier.urihttps://www.kriso.re.kr/sciwatch/handle/2021.sw.kriso/10658-
dc.description.abstractIn this paper, we introduce the machine learning model to estimate the nominal wake field of a ship from the afterbody hullform using a 3 dimensional CNN (Convolutional Neural Network) model. The convolution layers extract the features of the hullform and they are connected to the nominal wake field. In this research, two different models were tested. The one learns the velocity field itself while the other learns the Fourier coefficients expressing the wake field. Both models showed about 4% volumetric mean velocity error for the test data not used in the learning process. In the case study of two sample ships included in the test data, the direct prediction model showed the better estimation results than the Fourier coefficient based model. Application cases for estimating cavitation performance using the developed model were also introduced.-
dc.format.extent9-
dc.language한국어-
dc.language.isoKOR-
dc.publisher대한조선학회-
dc.title기계학습 모델을 활용한 선박 공칭반류장 예측-
dc.title.alternativeEstimation for Nominal Wake Field of Ships by Using Machine Learning Model-
dc.typeArticle-
dc.publisher.location대한민국-
dc.identifier.doi10.3744/SNAK.2024.61.5.343-
dc.identifier.bibliographicCitation대한조선학회 논문집, v.61, no.5, pp 343 - 351-
dc.citation.title대한조선학회 논문집-
dc.citation.volume61-
dc.citation.number5-
dc.citation.startPage343-
dc.citation.endPage351-
dc.identifier.kciidART003129357-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClasskci-
dc.subject.keywordAuthorNominal wake field(공칭반류장)-
dc.subject.keywordAuthorNeural network(신경망)-
dc.subject.keywordAuthorPropeller(프로펠러)-
dc.subject.keywordAuthorRegression(회귀분석)-
Files in This Item
There are no files associated with this item.
Appears in
Collections
ETC > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Kim, Kwang Soo photo

Kim, Kwang Soo
지능형선박연구본부
Read more

Altmetrics

Total Views & Downloads

BROWSE