Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

A Survey of Seafloor Characterization and Mapping Techniques

Full metadata record
DC Field Value Language
dc.contributor.authorLoureiro, Gabriel-
dc.contributor.authorDias, Andre-
dc.contributor.authorAlmeida, Jose-
dc.contributor.authorMartins, Alfredo-
dc.contributor.authorHong, Sup-
dc.contributor.authorSilva, Eduardo-
dc.date.accessioned2025-01-08T06:30:40Z-
dc.date.available2025-01-08T06:30:40Z-
dc.date.issued2024-04-
dc.identifier.issn2072-4292-
dc.identifier.urihttps://www.kriso.re.kr/sciwatch/handle/2021.sw.kriso/10668-
dc.description.abstractThe deep seabed is composed of heterogeneous ecosystems, containing diverse habitats for marine life. Consequently, understanding the geological and ecological characteristics of the seabed's features is a key step for many applications. The majority of approaches commonly use optical and acoustic sensors to address these tasks; however, each sensor has limitations associated with the underwater environment. This paper presents a survey of the main techniques and trends related to seabed characterization, highlighting approaches in three tasks: classification, detection, and segmentation. The bibliography is categorized into four approaches: statistics-based, classical machine learning, deep learning, and object-based image analysis. The differences between the techniques are presented, and the main challenges for deep sea research and potential directions of study are outlined.-
dc.language영어-
dc.language.isoENG-
dc.publisherMDPI-
dc.titleA Survey of Seafloor Characterization and Mapping Techniques-
dc.typeArticle-
dc.publisher.location스위스-
dc.identifier.doi10.3390/rs16071163-
dc.identifier.scopusid2-s2.0-85190278083-
dc.identifier.wosid001200950400001-
dc.identifier.bibliographicCitationREMOTE SENSING, v.16, no.7-
dc.citation.titleREMOTE SENSING-
dc.citation.volume16-
dc.citation.number7-
dc.type.docTypeArticle-
dc.description.isOpenAccessY-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaEnvironmental Sciences & Ecology-
dc.relation.journalResearchAreaGeology-
dc.relation.journalResearchAreaRemote Sensing-
dc.relation.journalResearchAreaImaging Science & Photographic Technology-
dc.relation.journalWebOfScienceCategoryEnvironmental Sciences-
dc.relation.journalWebOfScienceCategoryGeosciences, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryRemote Sensing-
dc.relation.journalWebOfScienceCategoryImaging Science & Photographic Technology-
dc.subject.keywordPlusSEDIMENT CLASSIFICATION-
dc.subject.keywordPlusMULTIBEAM ECHOSOUNDER-
dc.subject.keywordPlusDEEP-
dc.subject.keywordPlusBACKSCATTER-
dc.subject.keywordPlusCHALLENGES-
dc.subject.keywordPlusNODULES-
dc.subject.keywordPlusLIGHT-
dc.subject.keywordPlusSONAR-
dc.subject.keywordAuthorunderwater sensors-
dc.subject.keywordAuthordeep sea-
dc.subject.keywordAuthorseafloor characterization-
dc.subject.keywordAuthordeep learning-
Files in This Item
Appears in
Collections
ETC > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetrics

Total Views & Downloads

BROWSE