Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Multimodal Deep Learning Framework for Estimating Local Ice Loads on Polar Vessels

Full metadata record
DC Field Value Language
dc.contributor.authorOh, Eunjin-
dc.contributor.author하정석-
dc.contributor.author정성엽-
dc.date.accessioned2025-12-29T21:30:19Z-
dc.date.available2025-12-29T21:30:19Z-
dc.date.issued2025-07-
dc.identifier.urihttps://www.kriso.re.kr/sciwatch/handle/2021.sw.kriso/11019-
dc.titleMultimodal Deep Learning Framework for Estimating Local Ice Loads on Polar Vessels-
dc.typeArticle-
dc.identifier.bibliographicCitationProceedings of the International Conference on Port and Ocean Engineering under Arctic Conditions, POAC-
dc.citation.titleProceedings of the International Conference on Port and Ocean Engineering under Arctic Conditions, POAC-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscopus-
Files in This Item
Appears in
Collections
ETC > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Oh, Eunjin photo

Oh, Eunjin
지능형선박연구본부
Read more

Altmetrics

Total Views & Downloads

BROWSE