Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

고 레이놀즈 수에서의 축대칭 몰수체의 거칠기에 대한 수치연구Numerical Study on Roughness Effect for Axi-symmetry Submerged Body in High Reynolds Number

Other Titles
Numerical Study on Roughness Effect for Axi-symmetry Submerged Body in High Reynolds Number
Authors
정태환송형도염종길송성진박선호
Issue Date
2018
Publisher
해양환경안전학회
Keywords
고 레이놀즈수; 축대칭 몰수체; 전산유체역학; 마찰저항; 오픈폼; 표면거칠기; 벽함수; y+ 값; High Reynolds numbers; Axi-symmetry submerged body; Computational Fluid Dynamics (CFD); Friction resistance; OpenFOAM; Surface roughness; Wall function; y+ value
Citation
해양환경안전학회지, v.24, no.2, pp 246 - 252
Pages
7
Journal Title
해양환경안전학회지
Volume
24
Number
2
Start Page
246
End Page
252
URI
https://www.kriso.re.kr/sciwatch/handle/2021.sw.kriso/508
DOI
10.7837/kosomes.2018.24.2.246
ISSN
1229-3431
2287-3341
Abstract
In this paper, the friction drag force of 3D submerged body is investigated by considering the surface roughness, the first grid height, and the Reynolds number using open CFD source code, OpenFOAM 4.0. A procedure for estimating drag components by CFD code is set up and suggested in this study. In the 3D submerged body, because of the form factor in the 3D computations, the friction resistance with the small roughness of 12 ㎛ obtains different result with the smooth wall. As the Reynolds number increased, the boundary layer becomes thinner and the fiction resistance tends to decrease. In the computations for the effect of y+, the friction resistance and wall shear stress are excessively predicted when the y+ value deviates from the log layer. This is presumably because the boundary layer becomes thicker and the turbulence energy is excessively predicted in the nose due to the increase in y+ value. As the roughness increases, the boundary layer becomes thicker and the turbulence kinetic energy on the surface increases. From this study, the drag estimation method, considering the roughness by numerical analysis for ships or offshore structures, can be provided by using the suggested the y+ value and surface roughness with wall function.
Files in This Item
There are no files associated with this item.
Appears in
Collections
연구전략부 > International Maritime Research Center > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Joung, Tae Hwan photo

Joung, Tae Hwan
국제해사기술센터
Read more

Altmetrics

Total Views & Downloads

BROWSE